The Fox and the Arrow: A Milky. Way Star Tour

By: Michael Wright

Inspired by: Alan MacRobert

The Fox and the Arrow

Vulpecula and Sagitta might be small, unassuming constellations in the centre of the Summer Triangle, but their place along the path of the Milky Way makes them full of some interesting visual and astrophotographic delights. This region has lots of open clusters, emission and reflection nebulosity, planetary nebulae, and the occasional globular cluster as well.

This talk will take you on a star-hopping adventure starting at Albireo, the head of familiar Cygnus the Swan, and move through 16 targets of varying levels of difficulty that will please and challenge observers with many different levels of experience. Easy objects can be found in all sizes of telescopes. Moderate objects require at least 4 inches of aperture and some experience. Difficult objects require significant observing experience and at likely larger aperture.

What is Star-Hopping?

A star hop is a telescopic journey through a small, selected part of the heavens. Use of detailed maps is recommended so that you can use small patterns and groupings of stars to 'hop' your way from target to target.

Star hopping allows you to take the scenic route, see the backroads of the heavens and get a real feeling for the part of the sky you are visiting.

Mapping out a good star-hop requires careful planning. Use of a detailed star atlas down to magnitude 9 such as Uranometria or Interstellarum or planetarium software such as Stellarium or Sky Safari to print your own detailed charts is highly recommended.

Start by looking for the Summer Triangle, made from the 3 bright stars Vega, Deneb and Altair. We will start near the centre of the triangle at 3rd magnitude Albireo, the head of Cygnus.

East

Our targets tonight are in Vulpecula and Sagitta, two.small, relatively dim and unassuming constellations.

Albireo

61 Cyt - 6 Cyg A - CTT 17 - SMR 34 - MCA 55-CTT 18 - ז I 43 WAL 114 - BNU 10-HIP 95947 A - HR 7417 - SAO 87301 - WDS J19307+ 2758
Magnitude: $\mathbf{3 . 3 5}$ (reduced to $\mathbf{3 . 5 3}$ by 1.41 Airmasses)
Absolute Magnitude: -2.0
Absolute Magnitude: -2.01 .
Color Index ((-V): 0.82 .
RA/Dec (J2000.0): $19 \mathrm{~h} 30 \mathrm{~m} 44.695 /+27^{\circ} 57^{\prime} 31.4^{\prime \prime}$
RA/Dec (12000.0): $19 \mathrm{h30m} 44,695 /+27^{\circ} 57^{\prime} 31.4^{\prime \prime}$
RA/Dec (on date): ${ }^{19 \mathrm{~h} 31 \mathrm{~m} 38,395 /+28^{\circ} 00^{\prime} 18,9^{\prime \prime}}$
RA/Dec (on date): $19 h 31$ m38.395/+28000'18.9"
HA/Dec: $20 h 28$ m08. $535 /+28^{\circ}{ }^{\circ} 0^{\prime} 53.1^{4}$ (apparent)
HA/Dec: 20h28m08.535/+28000'53.1
Az./Alt.: $+92^{\circ} 11^{\prime} 23.2^{\prime \prime} /+45^{\circ} 09^{\circ} 03.2^{\prime \prime}$ (apparent)

Supergal. tong./lat.: $+353^{\circ} 55^{\prime} 35.9^{\prime \prime} \mid+75^{\circ} 13^{\prime} 18.4^{\prime \prime}$
Ecl. Iong./lat. (3 2enoo. 0): $+301^{\circ} 15^{\prime} 32.2^{\prime \prime} /+48^{\circ} 57^{\prime} 56$. $0^{\prime \prime}$
Ecl. long. /lat. (Jequo.0): $+301^{\circ} 15^{\prime} 32.2^{\prime \prime} /+48^{\circ} 57^{\prime} 56.0^{\prime \prime}$
Ecl. long./lat. (on date): $+301^{\circ} 34^{\prime 0} 02.2^{\prime \prime} /+48^{\circ} 57^{\prime \prime} 47.5^{\prime \prime}$
Ecliptic obliquity (on date): $+23^{\circ} 26^{\prime} 16.3^{\prime \prime}$
Eciptic obirquity (on date): +23.26

- Mean Sidereal Time: 15 h 5 m 44.0 s
Mean Sidereal Time: 15 h 59 m 44.0 s
Apparent Sidereal Time: 15 h 59 m 43.2 s
Rise: 18 h 39 m
ansit: 2h43m
set: 10h48m
IAU Constellation: Cyg
Distance: $385.53 \pm 14.47 \mathrm{ly}$
Proper motion: 2.05 mas 14.47 ly towards 227.0°

Proper motions by axes: $-1.50-1.40$ (mas/yr)
Spectral Type: : K3II $+\mathrm{B9} 9.5 \mathrm{~V}$
spectral Type:: K3II+B9.5V
Position angle (2017): 341.00°
Separation (2017): $65.600^{\prime \prime}\left(+0^{\circ} 01^{\prime} 05^{\prime \prime}\right.$
Separation (2017): $65.600^{\prime \prime}\left(+0^{\circ} 01^{\prime} 05^{\prime \prime}\right)$
Solar Az./Alt:: $+329^{\circ} 34^{\prime} 29^{\prime \prime} /-16^{\circ} 49^{\prime} 60^{\prime \prime}$
Lunar Az./Alt:: $+41^{\circ} 21^{\prime} 17^{\prime \prime} /-30^{\circ} 15^{\prime} 42^{\prime \prime}$

1 - Albireo - Beta Cygni

Type: Double Star

Magnitude: 3.1 and 5.1
Distance: 420-480ly
Separation: 34"
Difficulty - Very Easy
Our journey begins with the beautiful colour contrast between this pair of topaz and sapphire gems. Remarkable in any sized telescope!

These stars are actually 60ly apart and are not a true physical system, but their proximity along our line of sight makes them a visual delight regardless!
ws 9003 - $\Sigma \cdot 2525$ - HIP 95589 A -HD 183032 -SAO 87213 - WDS J19266+2719
Set: 10 h 40 m
Distance: 233.64t1
Proper motion: 131.16 mas/yr towards 47.6
Proper motion: 1 131.16 mas/yr towards 47.6°
Proper motions by axes: 96.9088 .40 (mas/yr)
Parallax: 13.960 ± 1.270 mas
Spectral Type: FgV
Position angle (2020): 290.00
Separation (2020): 2.300"
Solar Az./Alt.: + $329^{\circ} 34^{\prime} 29^{\prime \prime} /-16^{\circ} 49^{\prime} 60^{\prime \prime}$
tivar Az./Alt:; + $+41^{\circ} 21^{\prime} 17^{\prime \prime} /-30^{\circ} 15^{\prime} 42^{\prime \prime}$

From Albireo, hop 1.2 degrees southwest to double star Struve 2525

2 - Struve 2525

Type: Double Star

Magnitude: 8.1 and 8.4
Distance: 200ly
Separation: 2"
Difficulty - Moderate-Difficult

This double star can be a bit of a challenge to resolve due to the faintness of its members. This pair of sun-like stars orbit one another every 1,000 years with an average distance of about 120AU - about 3 times the distance Pluto is from the Sun!

ES 483 - Z Vul - HIP 95163 - HD 181987 - SAO 87113 - WDS $119217+2534$
Period: 2.45493 days
Next minimum light: $2022-06-23$ 10:56:26 UTC
Curation of eclipse: 18% (0d. $10 \mathrm{~h} \mathrm{36m} \mathrm{19.13485}$
Position angle (2015): $3.00{ }^{\circ}$
Separation (2015): $13.800^{\prime \prime}$
Solar Az./Alt.: $+329^{\circ} 34^{\prime} 29^{\prime \prime} /-16^{\circ} 49^{\prime} 60^{\prime}$
Solar Az./Alt.: $+329^{\circ} 34^{\prime} 29^{\prime \prime \prime} /-16^{\circ} 49^{\prime} 60^{\prime \prime}$
Lunar Az./Alt.: $+41^{\circ} 21^{\prime \prime} 17^{\prime \prime} /-30^{\circ} 15^{\prime} 42^{\prime \prime}$

* Hop 1.33 degrees further southwest to 5th mag 3 Vulpeculae then further on 0.75 degree south-southwest to a pair of 7th magnitude stars. Normally similarly bright, but the southeastern one is variable star Z Vulpeculae.

3 - Z Vulpeculae

Type: Eclipsing Variable Star
Magnitude: 7.3-9.3
Distance: 626ly

Difficulty - Moderate
This eclipsing variable is normally 7th magnitude, similar in brightness to another closeby 7th magnitude star. However, for about 10 hours every 2.45 days, the star fades to 9th magnitude! Compare it to the nearby 7th magnitude star and see if it is eclipsing while you are observing!

Move 1.33 degrees east-southeast to our first deep sky object of the night, open cluster NGC6800.

4 - NGC6800

Type: Open Cluster

Distance: 3300ly
Diameter: 30^{\prime} or less
Difficulty - Difficult
About half a degree northwest of Alpha and 8 Vulpeculae, this sparse open cluster has about 25-50 stars with no visible central concentration. The stars range from 10th magnitude to fainter. It stands out from the general star field, but is a little challenging.

Shift southeast to centre on Alpha and 8 Vulpeculae, a pair of reddish orange stars. Swing 2 degrees due south to a pair of 7th magnitude stars lined up east to west. Our next target is just to their west.

5 - van den Bergh 126

Type: Reflection Nebula
Distance: 2720ly
Difficulty - Very Difficult
This one is a real challenge! A small reflection nebula lit by an 8th magnitude star, HD 182918. It is superimposed over the background of the dark nebulae LDN 768 and 769. Minimum aperture of 8 inches under dark, transparent skies is needed!

```
Coathanger (AlSufi's Cluster' Brocchi's Cluster -
Gal. long./lat.: +54040'43.0'y+1056'35.0'
Sypergak, long./lat.: +329019'19.6"/+81029'55.9"
Ecl(%ang./lat. (J2000.0): +29, 1, 15.5'l+41037'32.7
Ecliptic obliquity (on date): +2\mp@subsup{3}{}{\circ}2\mp@subsup{6}{}{\prime}16.3
Maptr obiquity (on date) +23.26
Apparent Sidaereal Time: 15h59m43.25
Rise: 19h14m
Trensit:/2h38m
Set: thamin
di4U Constellation: 
Size: +1000'00.00
MNosDmongca, description: no noticeable concentration of stars
medium brightness range of cluster members
lmeciem brightness range of cluster.
poor cluster with less than 50 stars.'
Solar Az./Alt:: +329`34'29"/-16049'60"
Due south from Van Den Bergh 126 is The Coathanger Cluster a further 2 degrees or so.
```


6 - The Coathanger - Brocchi's Cluster

Type: Asterism
Distance: 237-1200ly
Difficulty - Very Easy

Stars ranging from 5th-7th magnitude forming a remarkable asterism visible in binoculars or in a telescope under widefield low power. It can be seen with the naked eye as a fuzzy brightening of the Milky Way under dark skies. Very striking! Although this was considered to be a true cluster for a long time, it's members vary wildly in distance and proper motion.

Our next object is NGC6802, a dim small cluster just off the east end of the Coathanger.

7 - NGC6802

Type: Open Cluster
Magnitude: 8.8
Diameter: 5'
Distance: 3600ly
Difficulty: Moderate-Difficult

Often neglected, this compressed cluster of stars ranges from 14h-18th magnitude just off of the eastern end of the Coathanger. It is extended north-south, with some people seeing it as a rectangular shape. In small scopes, it just appears as a fuzzy glow.

2 degrees south of NGC6802 is another non-NGC challenge, Sharpless 2-82.

8 - Sh2-82 - The Little Cocoon Nebula

Type: Emission and Reflection Nebula
Magnitude: 8.8 (?)
Diameter: 7 '
Distance: 3590ly
Difficulty - Very Difficult

Lit by an 11th magnitude star, this nebula is irregularly round. It was termed moderately bright in Lynd's catalog. It is involved with LDN727. Using at least 6 inches of aperture under dark skies, look for a faint irregular glow around the 11th magnitude star next to the brighter nearby uninvolved 7th magnitude star.

Sham

Gal. long./lat.: $+54^{\circ} 27^{\prime 20.8^{\prime \prime} /-2^{\circ} 08^{\prime} 40.4^{\prime \prime}}$
Supergal. long./lat.: $+310^{\circ} 066^{\prime 20.11 /+78} 58^{\prime} 05.8^{\prime \prime}$
Ecl. long. /lat. (12000.0): $+301^{\circ} 04^{\prime} 39.9^{\prime \prime} /+38^{\circ} 47^{\prime 2} 25.3^{\prime \prime}$
ong./lat. (on date) $+301^{\circ} 23^{\prime} 12.1^{\prime \prime} /+38^{\circ} 47^{\prime} 16.8^{\prime \prime}$
Ecliptic obliquity (on date): $+23^{\circ} 26^{\prime} 16.3^{\prime \prime}$
Mean Sidereal Time: 15 h 59 m 44.0 s
Apparent Sidereal Time: 15 h 59 m 43.2 s
Rise: 19 h 38 m
Transit: $2 h 53 \mathrm{~m}$

- Set: 10hosm
IAU Constellation: Sge
istance: $382.36 \pm 8.11 \mathrm{ly}$
Proper motion: 24.76 mas/yr towards 142.50
Proper motions by axes: $15.08-19.64$ (mas/yr)
parallax: 8.530 ± 0.185 mas
Spectral Type: G1II
Position angle (2015): 180.00
Separation (2015): 28.900"
Sparation Alt:: ' $+329^{\circ} 34^{\prime} 29^{\prime \prime} /-16^{\circ} 49^{\prime} 60^{\prime \prime}$
Sunar Az./Alt.: $+41^{\circ} 21^{\prime} 17^{\prime \prime} /-30^{\circ} 15^{\prime} 42^{\prime \prime}$
Solar Az./Alt.: ' $+329^{\circ} 34^{\prime}$ '29"'/-16
Lunar Az./A9' $40^{\prime \prime}$
Lut.: $+41^{\circ} 21^{\prime} 17^{\prime \prime} /-30^{\circ} 15^{\prime} 42^{\prime \prime}$

Now back to an easier target. Due east is the naked eye yellow-orange stars Sham and Beta Sagittae that form the feathers of the Arrow.

9 - 'Sham' Alpha Sagittae and Beta Sagittae

Type: Stars

Magnitude: Both 4.38
Distance: 382ly and 420ly
Spectral Class: Sham - G1 II, Beta - G8 IIIa CN0.5
Difficulty - Very Easy

Back to an easier target! This pair of stars is naked eye in semi-dark skies. Because of their similar spectral types, they make a good test of your low-light colour discrimination. Using binoculars or a telescope, compare their colours. Beta should appear redder!

From Sham, move 3 degrees east-northeast along the Arrow's shaft towards the 8th magnitude glow of M71
 FOV 15.8° 9.2 FPS 2022-06-22 23:12:06 UTC-04:00

10 - M71 - Angelfish Cluster

Type: globular cluster
Magnitude: 8.2
Distance: 12,000ly
Diameter: 7'
Difficulty: Easy-Moderate

M71 is an interesting globular cluster in that it is very loose - for a long time, it was argued whether or not it was a dense open cluster or in fact a globular cluster. In a low-power field of view, it is at the centre of an area outlined by 4 distinct Y -shaped asterisms facing in different directions. There is an arrow-shaped concentration in the southwest quadrant. Dark lanes can be seen running southeast to northwest.

10-M71 - Angelfish Cluster

By: Ernest Shekolyan

By: Michael Wright

Cl Collinder 408

Type: custom object
RA/Dec (12000.0): $19 \mathrm{~h} 53 \mathrm{~m} 17.05 \mathrm{~s} /+18^{\circ} 20^{\prime} 42.0^{\prime \prime}$ RA/Dec (on tate) 1 19h54m16. 635/+18024'09.3 HA/Dec: '20h05m31.115/+18.25'05. $\mathrm{O}^{\prime \prime}$ (apparent Az./Alt.: $+97^{\circ} 53^{\prime} 14.4^{\prime \prime} /+35^{\circ} 08^{\prime} 26.6^{\prime \prime}$ (apparent) Gal. long. lat.: +56 ${ }^{\circ} 19^{\prime} 41.8^{\prime \prime} /-4^{\circ} 41^{\prime} 08.5^{\prime \prime}$.
Supergal. long.//aty $+309^{\circ} 15^{\prime} 13.6^{\prime \prime} /+75^{\circ} 49^{\prime} \cdot 44.7^{\prime \prime}$
Ecl. long./lat. $(32000.0):+305^{\circ} 04^{\prime} 12.9^{\prime \prime} /+38^{\circ} 23^{\prime} 56.7^{\prime \prime}$ Ecl. long, /lat. (on date): $+305^{\circ} 22^{\prime} 44.7^{\prime \prime} /+38^{\circ} \circ 3^{\prime} 48.6^{\prime \prime}$ Mean Sidereal Time: $15 \mathrm{~h} 59 \mathrm{~m} 44^{\circ} .066^{\prime} 16.3$ Aparent Sidereal Time: 15 h 54.0 m ise: 1 h 50 m . Rise: 19 h 50 m
Transit: 3 h 06 m Iransit: 3 nobm
Set: 10 h 22 m Set: 1unzen IAU Constellal: -49 Solar Az./Alt.: $+329^{\circ} 34^{\prime} 29^{\prime \prime} /-16^{\circ 49^{\prime}} 6$ Solar Az./Alt.: $+329^{\circ} 34^{\prime} 29^{\prime \prime} /-16^{\circ} 49^{\prime} 60^{\prime \prime}$
Lunar Az./Alt.: $+41^{\circ} 21^{\prime} 177^{\prime \prime} /-30^{\circ} 15^{\prime \prime} 42^{\prime \prime}$

A half a degree south-southwest of M71 lies the challenging, poor cluster Harvard 20.

11 - Harvard 20

Type: open cluster
Magnitude: 7.7
Distance: 5707ly
Diameter: 9'
Difficulty - Difficult

Just $1 / 2^{\circ}$ to the south-southwest of M71 lies the poor, neglected open cluster Harvard 20. There are about 20 stars magnitude 11 and fainter, highlighted on the western end by a pair of 9th magnitude stars. It is a bit of a challenge to discern it from the background starfield, perhaps better seen in moderate to large scopes.

Navigate north-northeast to Gamma Sagittae. Our next target, M27; is a 3.3 degree star hop northwards.

12 - M27 - The Dumbbell Nebula

Type: planetary nebula
Magnitude: 7.5
Distance: 1360ly
Size: Brightest Portion 8' by 5'
Difficulty - Easy

Due north of Gamma Sagittae, this planetary nebula is readily visible in 7×50 binoculars even under moderately light polluted skies! In small telescopes, looks vaguely rectangular to apple-core shaped with a hint of mottling, and a grey-green colour. In larger telescopes, look for the faint lobes on either side of the much brighter bar.

12 - M27 - The Dumbbell Nebula

Sagitte
$\oplus^{\text {Ang̈gelfish Cluster }}$

From M27, head about 2.5 degrees west to 5th magnitude 12 Vulpeculae, NGC6830 lies about 0:5 degree north.

13 - NGC6830 - Poodle Cluster

Type: open cluster
Magnitude: 7.9
Distance: 4800ly
Size: 8'
Difficulty - Moderate

This 20-star cluster has an interesting cross-in-a-cross shape, or some people see a dog. It's brightest stars are 9th magnitude, a score brighter than 13th magnitude.

Heading another 2.5 degrees west, we arrive at open cluster NGC6823, enrobed in the nebula NGC6820.

14 - NGC6820 \& NGC6823

Type: open cluster + emission nebula
Magnitude: 7.1 (cluster)
Distance: 6000ly
Size: 40'
Difficulty - Moderate (cluster) / Difficult (nebulosity)
This cute little cluster (NGC6823) is wrapped in faint nebulosity (NGC6820) that requires large aperture, dark skies and UHC or Olll filters. The cluster is round and petite and only about 2 million years old. With lots of dark lanes and mottling, this is also a nice target for astrophotographers.

Sagitta
$\oplus^{\text {Ang̈gelfish Cluster }}$

Around 3 degrees east northeast we come to mag 4.513 Vulpeculae. Continuing on 3 degrees in this direction we come to a pair mag 5.5 stars at 16 Vulpeculae. Another 3 degrees further we arrive at NGC6885.

15 - Caldwell 37 / NGC6885

Type: Open Cluster(s)
Magnitude: 8.1
Distance: 1360ly
Size: Brightest Portion 8' by 5'
Difficulty - Easy-Moderate

This cluster forms a glistening ring of stars with 20 Vulpeculae as the sapphire gem on the eastern side. Just to the north, 19 and 18 Vulpeculae form a pretty grouping with some other stars. Dreyer catalogued another cluster in this location, NGC6882, but there does not appear to be one - was it an erroneous re-discovery of NGC6885 by Herschel?

15 - Caldwell 37 / NGC6885

By: Michael Wright

> Caldwell $37 /$ NGC 6885
> Howdervale, ON
> July 30, 2022 23:00
> 114 mm Newtonian EQ
> Fader Hyperion 24 mm $41.6 x$

From 20 Vulpeculae, move northeast to 5th magnitude 23 Vulpeculae. From there, travel due east over 5 degrees to the bright open cluster NGC6940.

16 - NGC6940 - Mothra Cluster

Type: open cluster
Magnitude: 6.3
Distance: 2600ly
Size: 25'
Difficulty - Easy

Largely missed by many observers, this hidden treasure of at least 170 stars is easily seen in 7×50 binoculars as an elliptical swarm. The brightest members shine at 11 th magnitude. There are some brighter field stars superimposed on the cluster. In a small telescope, it is quite stunning under a dark sky. It is best viewed at low power, where it has a rich, mottled glow. The brightest star here is the semi-regular variable FG Vulpeculae, with a warm orange hue that contrasts with its aquamarine companion. O'Meara thinks the cluster looks like Mothra from the Godzilla movies of the 1960s.

16 - NGC6940 - Mothra Cluster

By: Michael Wright

References:

Alan MacRobert. 1993. Star-Hopping for Backyard Astronomers. Sky Publishing Corp.
Stephen O'Meara. 2007. Deep-Sky Companions: Hidden Treasures. Cambridge University Press.
Stephen O'Meara. 2016. Deep-Sky Companions: The Caldwell Objects. Cambridge University Press.
Stephen O'Meara. 2014. Deep-Sky Companions: The Messier Objects. 2nd ed. Cambridge University Press.

Courtney Seligman. Celestial Atlas. http://cseligman.com/text/atlas.htm
Deep Sky Observer's Companion. http://www.docdb.net/index.php
www.wikipedia.org

